Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

10-(4-Fluorophenyl)-3,3,6,6,9-penta-methyl-3,4,6,7,9,10-hexahydro-acridine- $1,8(2 H, 5 H)$-dione and 10-(4-fluorophenyl)-3,3,6,6-tetra-methyl-9-propyl-3,4,6,7,9,10-hexa-hydroacridine-1,8(2H,5H)-dione

A. Subbiah Pandi, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}$ * S. Shanmuga Sundara Raj, ${ }^{\text {b }}$ Hoong-Kun Fun, ${ }^{\text {b }}$ P. R. Seshadri ${ }^{\text {a }}$ and D. Thirumalai ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b } X \text {-ray Crystallography Unit, School of Physics, }}$ Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: d_velu@yahoo.com

Received 29 March 2001
Accepted 2 April 2001
10-(4-Fluorophenyl)-3,3,6,6,9-pentamethyl-3,4,6,7,9,10-hexa-hydroacridine-1,8(2H,5H)-dione, $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FNO}_{2}$, (I), crystallizes with two crystallographically independent molecules (which differ slightly in conformation), while 10-(4-fluoro-phenyl)-9-propyl-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-acridine-1,8(2H,5H)-dione, $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{FNO}_{2}$, (II), crystallizes with one molecule per asymmetric unit. In both structures, the central ring in the acridine moiety is in a sofa conformation, while the outer rings adopt intermediate half-chair/sofa conformations. The central pyridine ring is orthogonal to the substituted phenyl ring. In both structures, the packing of the crystal is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.

Comment

Acridine and its derivatives exhibit a wide spectrum of biological activities, such as antibacterial (Acheson, 1956), mutagenic and antitumour (Talacki et al., 1974), and antiamoebic (Prasad Krishna et al., 1984). The potency of acridines as antiviral and antibacterial agents is due to their ability to bind DNA by intercalation (Neidle, 1979; Nandi et al., 1990). Substitutions at C9 and N10 make the central ring of acridine buckled along the $\mathrm{C} 9 \cdots \mathrm{~N} 10$ direction, with the dihedral angle formed by the two halves ranging from 7 to 13°. These values are smaller than those found in the present work. This buckling was postulated as the cause of their biological properties by Glusker et al. (1972). In acridine-1,8-diones, the electron delocalization is along a stretch of nine non-H atoms $(\mathrm{O} 1=\mathrm{C} 1-\mathrm{C} 13=\mathrm{C} 14-\mathrm{N} 10-\mathrm{C} 11=\mathrm{C} 12-\mathrm{C} 8=\mathrm{O} 2), \quad$ which facilitates the exhibition of fluorescence and laser activity
(Selladurai et al., 1990). The effectiveness of this laser activity can be controlled by the substituents at the 9 - and 10 -positions of the acridine chromophore. The decahydroacridine-1,8diones act as photo-sensitizers (Timpe et al., 1993). Acridinediones have also been found to behave as laser dyes, acting at around 475-495 nm (Murugan et al., 1998). The present study of the title compounds, (I) and (II), is part of a series of investigations on the crystal structures of acridinedione derivatives.

(I)

(II)

Compound (I) has two molecules in the asymmetric unit, designated ($\mathrm{I} a$) and ($\mathrm{I} b$). Fig. 1 shows the molecular structure and the atom-labelling scheme for both ($\mathrm{I} a$) and ($\mathrm{I} b$). Compound (II) has one molecule per asymmetric unit and Fig. 2 shows the molecular structure and atom-labelling scheme for (II).

The $\mathrm{C}=\mathrm{O}$ and $\mathrm{Csp} p^{2}-\mathrm{F}$ bond lengths in both structures are comparable with the values found in the literature (Allen et al., 1987). The average $\mathrm{C}=\mathrm{O}[1.224$ (3) \AA in $(\mathrm{I} a), 1.233$ (3) \AA in (Ib) and 1.228 (3) \AA in (II)] and N-C [1.417 (3) \AA in (I a),

Figure 1
The molecular structure of the two independent molecules of (I) with the atom-labelling scheme and 30% probability displacement ellipsoids. H atoms are displayed as small spheres of arbitrary radii.
1.418 (2) \AA in (Ib) and 1.415 (3) \AA in (II)] bond lengths agree well with the values in several related structures (Jeyakanthan et al., 2000; Gunasekaran et al., 1996; Britto-Arias et al., 1996). Selected geometric parameters are given in Tables 1 and 3.

The acridine moiety is folded about the line passing through atoms C9 and N10, and the dihedral angle between the two halves is $27.4(1)^{\circ}$ in ($\left.\mathrm{I} a\right), 18.8(1)^{\circ}$ in (Ib) and $21.5(1)^{\circ}$ in (II). These values compare well with those reported in similar acridine derivatives (Gunasekaran et al., 1996; Sivaraman et al., 1994, 1996). The dihedral angle between the outer rings A and C of the acridine moiety is $18.0(1)^{\circ}$ in ($\left.\mathrm{I} a\right), 9.1(1)^{\circ}$ in ($\left.\mathrm{I} b\right)$ and $15.0(1)^{\circ}$ in (II), and this shows considerable buckling of the acridine nucleus.

The phenyl ring D is orthogonal to the central ring B in both structures, forming a dihedral angle of $88.3(1)^{\circ}$ in (I a), $87.1(1)^{\circ}$ in ($\mathrm{I} b$) and $87.5(1)^{\circ}$ in (II). The valence angles around the N atom sum to 359.8 (2) ${ }^{\circ}$ in ($\left.\mathrm{I} a\right), 359.0(2)^{\circ}$ in ($\mathrm{I} b$) and $358.9(2)^{\circ}$ in (II), and these values are indicative of $s p^{2}$ hybridization of the N atom.

The C25A and C25B methyl groups in (I) and the C25 propyl group in (II) are axial, as indicated by the angles formed by the $\mathrm{C} 9-\mathrm{C} 25$ and $\mathrm{C} 9-\mathrm{H} 9$ bonds with the plane through $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 13 / \mathrm{C} 14 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{C} 8 / \mathrm{O} 2[\mathrm{C} 9 A-\mathrm{C} 25 A 88.1$, $\mathrm{C} 9 A-\mathrm{H} 9 A 21, \mathrm{C} 9 B-\mathrm{C} 25 B 77.6$ and $\mathrm{C} 9 B-\mathrm{H} 9 B 30^{\circ}$ in (I), and C9-C25 79.7 and $\mathrm{C} 9-\mathrm{H} 918^{\circ}$ in (II)]. The deviation of atoms O 1 and O 2 from the mean planes passing through rings A and C are 0.144 (3) and 0.175 (2) \AA in (I a), 0.022 (2) and 0.098 (2) \AA in (Ib), and 0.018 (2) and 0.101 (2) \AA in (II), respectively.

The puckering amplitudes (Cremer \& Pople, 1975) of the rings in the acridine moiety (Table 5) agree well with those of related structures (Gunasekaran et al., 1997; Jeyakanthan et al., 2000). The conformations of the rings of the acridine moiety in both structures are defined by asymmetry parameters (Nardelli, 1983a), also given in Table 5.

Figure 2
The molecular structure of (II) with the atom-labelling scheme and 30% probability displacement ellipsoids. H atoms are displayed as small spheres of arbitrary radii.

In addition to the normal van der Waals interactions, the packing of the crystals in both structures is stabilized by $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds. In (I), an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond joins the molecules in a chain along the b direction. In (II), four $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions occur with $\mathrm{H} \cdots \mathrm{O}$ distances less than the sum of the van der Waals radii (Bondi, 1964) (Table 4). In this structure, the acridine molecules are stacked in a head-to-head manner (Dauter et al., 1976) and are alternately parallel with each other. This type of stacking is also found in acridinedione (Sivaraman et al., 1996) and 9-aminoacridine structures (Talacki et al., 1974).

Experimental

The title compounds were synthesized as follows: a mixture of $2,2^{\prime}$ -ethylidenebis(5,5-dimethylcyclohexane-1,3-dione) ($2 \mathrm{~g}, \quad 6.5 \mathrm{mmol}$) and 4 -fluoroaniline ($0.63 \mathrm{ml}, 6.5 \mathrm{mmol}$) for compound (I), and a mixture of $2,2^{\prime}$-butylidenebis(5,5-dimethylcyclohexane-1,3-dione) ($2 \mathrm{~g}, 6.0 \mathrm{mmol}$) and 4-fluoroaniline ($0.60 \mathrm{ml}, 6.0 \mathrm{mmol}$) for compound (II), were taken as starting materials. The reaction mixtures were refluxed in acetic acid (25 ml) for 7 h , after which time they were concentrated and poured onto ice. The yellow solids obtained were filtered and dried to afford the title compounds in yields of 1.8 g (72.3%) for (I) and 1.75 g (71.3%) for (II). The compounds were then dissolved in a mixture of chloroform and methanol (2:1). Slow evaporation of the solvent at room temperature produced crystals of (I) and (II) suitable for X-ray analysis.

Compound (I)

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FNO}_{2}$
$M_{r}=381.47$
Monoclinic, $P 2_{1} / c$
$a=17.1481$ (2) £
$b=17.39090(10) \AA$
$c=15.8023(3) \AA$
$\beta=112.8490(10)^{\circ}$
$V=4342.79(10) \AA^{3}$
$Z=8$
$D_{x}=1.167 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8324
reflections
$\theta=1.3-28.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pale yellow
$0.48 \times 0.38 \times 0.28 \mathrm{~mm}$

Data collection

Siemens SMART CCD area-
detector diffractometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.963, T_{\text {max }}=0.978$
29750 measured reflections

10547 independent reflections 4439 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.075$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-22 \rightarrow 22$
$k=-23 \rightarrow 20$
$l=-20 \rightarrow 21$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{F} 1 A-\mathrm{C} 22 A$	$1.359(3)$	$\mathrm{F} 1 B-\mathrm{C} 22 B$	$1.353(2)$
$\mathrm{O} 1 A-\mathrm{C} 1 A$	$1.216(3)$	$\mathrm{O} 1 B-\mathrm{C} 1 B$	$1.227(3)$
$\mathrm{O} 2 A-\mathrm{C} 8 A$	$1.232(3)$	$\mathrm{O} 2 B-\mathrm{C} 8 B$	$1.239(2)$
$\mathrm{N} 10 A-\mathrm{C} 11 A$	$1.401(3)$	$\mathrm{N} 10 B-\mathrm{C} 11 B$	$1.399(3)$
$\mathrm{N} 10 A-\mathrm{C} 14 A$	$1.401(3)$	$\mathrm{N} 10 B-\mathrm{C} 14 B$	$1.402(2)$
$\mathrm{N} 10 A-\mathrm{C} 19 A$	$1.449(3)$	$\mathrm{N} 10 B-\mathrm{C} 19 B$	$1.453(2)$
$\mathrm{C} 11 A-\mathrm{N} 10 A-\mathrm{C} 14 A$	$118.98(18)$	$\mathrm{C} 11 B-\mathrm{N} 10 B-\mathrm{C} 14 B$	$120.13(16)$
$\mathrm{C} 11 A-\mathrm{N} 10 A-\mathrm{C} 19 A$	$120.14(17)$	$\mathrm{C} 11 B-\mathrm{N} 10 B-\mathrm{C} 19 B$	$119.04(17)$
$\mathrm{C} 14 A-\mathrm{N} 10 A-\mathrm{C} 19 A$	$120.64(17)$	$\mathrm{C} 14 B-\mathrm{N} 10 B-\mathrm{C} 19 B$	$119.81(17)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.188$
$S=1.02$
10547 reflections
505 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0504 P)^{2}\right. \\
& \quad+0.0465 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.72 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bonding and short-contact geometry $\left(\AA \AA^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9 $A-\mathrm{H} 9 A \cdots \mathrm{O} 1 A$	0.98	2.51	$2.850(4)$	100
$\mathrm{C} 9 A-\mathrm{H} 9 A \cdots \mathrm{O} 2 A$	0.98	2.52	$2.856(5)$	100
C9B-H9B $\cdots \mathrm{O} 1 B$	0.98	2.51	$2.828(4)$	98
C9B-H9B $\mathrm{O} 2 B$	0.98	2.53	$2.819(3)$	97
C24A-H24A $\cdots \mathrm{O} 2 A^{\mathrm{i}}$	0.93	2.50	$3.247(3)$	138
Sym				

Compound (II)

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{FNO}_{2}$	$D_{x}=1.184 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=409.53$	Cu $K \alpha$ radiation
Monoclinic, C2/c \AA	Cell parameters from 25
$a=27.4540(10) \AA$	\quad reflections
$b=12.2738(10) \AA$	$\mu=12.5-18.0^{\circ}$
$c=16.2792(10) \AA$	$T=293(2) \mathrm{Km}$
$\beta=123.118(10)^{\circ}$	Block, pale yellow
$V=4594.4(5) \AA^{\circ}$	$0.20 \times 0.18 \times 0.16 \mathrm{~mm}$
$Z=8$	

Data collection

Enraf-Nonius CAD-4 diffrac-	$h=0 \rightarrow 34$
\quad tometer	$k=0 \rightarrow 15$
$\omega / 2 \theta$ scans	$l=-20 \rightarrow 16$
4454 measured reflections	3 standard reflections
4374 independent reflections	every 200 reflections
3087 reflections with $I>2 \sigma(I)$	frequency: 120 min
$R_{\text {int }}=0.053$	intensity decay: $<1 \%$
θ	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.196$
$S=1.10$
4374 reflections
272 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0504 P)^{2}\right. \\
& +0.0465 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.17 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.00046 \text { (13) }
\end{aligned}
$$

Table 3
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (II).

F1-C22	$1.355(2)$	$\mathrm{N} 10-\mathrm{C} 14$	$1.398(2)$
O1-C1	$1.227(2)$	$\mathrm{N} 10-\mathrm{C} 11$	$1.402(2)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.230(2)$	$\mathrm{N} 10-\mathrm{C} 19$	$1.446(2)$
C14-N10-C11	$119.65(14)$	$\mathrm{C} 11-\mathrm{N} 10-\mathrm{C} 19$	$119.14(14)$
C14-N10-C19	$120.07(14)$		

Table 4
Hydrogen-bonding and short-contact geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9...O1	0.98	2.46	2.802 (2)	100
C9-H9 . . O^{2}	0.98	2.47	2.798 (4)	99
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.97	2.53	3.494 (2)	171
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{O} 1^{\text {iii }}$	0.93	2.56	3.423 (3)	155

Table 5
Puckering (\AA) and asymmetry parameters $\left({ }^{\circ}\right)$ of the ring systems in (I) and (II).

Ring and molecule	Total puckering amplitude	Asymmetry parameters	Conformation
A, (Ia)	0.395 (4)	$\begin{aligned} & \Delta C_{s}(\mathrm{C} 3 A)=0.072(2) \\ & \Delta C_{2}(\mathrm{C} 3 A-\mathrm{C} 2 A)=0.039 \end{aligned}$	Half-chair/sofa
A, (Ib)	0.482 (3)	$\begin{align*} & \Delta C_{s}(\mathrm{C} 3 B)=0.022(1) \\ & \Delta C_{2}(\mathrm{C} 3 B-\mathrm{C} 2 B)=0.099 \tag{1} \end{align*}$	Half-chair/Sofa
A, (II)	0.485 (2)	$\begin{aligned} & \Delta C_{s}(\mathrm{C} 3)=0.039(1) \\ & \Delta C_{2}(\mathrm{C} 3-\mathrm{C} 2)=0.089 \end{aligned}$	Half-chair/Sofa
B, (Ia)	0.370 (3)	$\Delta C_{s}(\mathrm{~N} 10 A)=0.005$ (1)	Sofa
B, (Ib)	0.255 (3)	$\Delta C_{s}(\mathrm{~N} 10 B)=0.007$ (1)	Sofa
B, (II)	0.281 (2)	$\Delta C_{s}(\mathrm{~N} 10)=0.005$ (1)	Sofa
C, (Ia)	0.488 (2)	$\begin{aligned} & \Delta C_{s}(\mathrm{C} 6 A)=0.049 \\ & \Delta C_{2}(\mathrm{C} 7 A-\mathrm{C} 6 A)=0.076 \end{aligned}$	Half-chair/Sofa
C, (Ib)	0.469 (3)	$\begin{align*} & \Delta C_{s}(\mathrm{C} 6 B)=0.042(2) \\ & \Delta C_{2}(\mathrm{C} 7 B-\mathrm{C} 6 B)=0.077 \tag{1} \end{align*}$	Half-chair/Sofa
C, (II)	0.477 (2)	$\begin{aligned} & \Delta C_{s}(\mathrm{C} 6)=0.062 \\ & \Delta C_{2}(\mathrm{C} 7-\mathrm{C} 6)=0.067 \end{aligned}$	Half-chair/Sofa

In both compounds, all H atoms were geometrically fixed and allowed to ride on the corresponding non- H atoms, with $\mathrm{C}-\mathrm{H}=$ $0.93-0.98 \AA$, and $U_{\text {iso }}=1.5 U_{\text {eq }}$ of the attached C atoms for methyl-H atoms and $1.2 U_{\text {eq }}$ for other H atoms.

For compound (I), data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT. For compound (II), data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: SDP (Frenz, 1985). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983b, 1995).

HKF thanks the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801. SSSR thanks Universiti Sains Malaysia for a visiting Postdoctoral Research Fellowship. DV thanks the University Grants Commission, India, for a major project.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1517). Services for accessing these data are described at the back of the journal.

References

Acheson, R. M. (1956). The Acridines, in The Chemistry of Heterocyclic Compounds, Vol. 9, edited by A. Weissberger, pp. 339-361. New York: Interscience.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Britto-Arias, M., Ramirez, G., Rivas, R. E., Molins, E. \& Maniukiewicz, W. (1996). Acta Cryst. C52, 2811-2814.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dauter, Z., Bogucka-Ledowchowska, M., Hempel, A., Ledochowski, A. \& Kosturkiewicz, Z. (1976). Rocz. Chem. 50, 1573-1586.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frenz, B. A. (1985). SDP-Plus. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Glusker, J. P., Berman, H. M. \& Carrel, H. L. (1972). Acta Cryst. A28, S-44.
Gunasekaran, K., Velmurugan, D. \& Murugan, P. (1997). Acta Cryst. C53, 1512-1514.
Gunasekaran, K., Velmurugan, D., Murugan, P., Ramakrishnan, V. T., Panneerselvam, K. \& Soriana-García, M. (1996). Acta Cryst. C52, 2609-2612.
Jeyakanthan, J., Shanmuga Sundara Raj, S., Velmurugan, D., Fun, H.-K., Rajan, T. J. \& Ramakrishnan, V. T. (2000). Acta Cryst. C56, 1109-1112.
Murugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. \& Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999-1003.

Nandi, R., Debnath, D. \& Maiti, M. (1990). Biochem. Biophys. Acta, 104, 339342.

Nardelli, M. (1983a). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1983b). Comput. Chem. 7, 95-98.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Neidle, S. (1979). Prog. Med. Chem. 16, 151-221.
Prasad Krishna, B. N., Banasal, I., Das, P. \& Srivatsava, R. (1984). Curr. Sci. 53, 778-780.
Selladurai, S., Subramaniam, K. \& Ramakrishnan, V. T. (1990). J. Crystallogr. Spectrosc. Res. 20, 227-232.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sivaraman, J., Subramaniam, K., Velmurugan, D., Subramanian, E. \& Ramakrishnan, V. T. (1994). Acta Cryst. C50, 2011-2013.
Sivaraman, J., Subramaniam, K., Velmurugan, D., Subramanian, E. \& Shanmugasundaram, P. S. (1996). Acta Cryst. C52, 481-483.
Talacki, R., Carrel, H. L. \& Glusker, J. P. (1974). Acta Cryst. B30, 1044-1047.
Timpe, H. J., Ulrich, S., Decker, C. \& Foussaier, J. P. (1993). Macromolecules, 26, 4560-4566.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

